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TESTING OF GYROLESS ESTIMATION 
ALGORITHMS FOR THE FUSE SPACECRAFT 

Rick Harman*, Julie Thienelt and Yaakov Oshmanl 

The Far Ultraviolet Spectroscopic Explorer (FUSE) is equipped with 
two ring laser gyros on each of the spacecraft body axes. In May 2001 
one gyro failed. It is anticipated that all of the remaining gyros will 
fail, based on intensity warnings. In addition to the gyro failure, two 
of four reaction wheels failed in late 2001. The spacecraft control now 
relies heavily on magnetic torque to perform the necessary science 
maneuvers and hold on target. The only sensor consistently available 
during slews is a magnetometer. This paper documents the testing 
and development of magnetometer-based gyroless attitude and rate 
estimation algorithms for FUSE. The results of two approaches are 
presented, one relies on a kinematic model for propagation, a method 
used in aircraft tracking. The other is a pseudo-linear Kalman filter 
that utilizes Euler’s equations in the propagation of the estimated 
rate. Both algorithms are tested using flight data collected over a 
few months after the reaction wheel failure. Finally, the question 
of closed-loop stability is addressed. The ability of the controller to 
meet the science slew requirements, without the gyros, is analyzed. 

INTRODUCTION 

This work focuses on attitude estimation using sensor data from only a magne- 
tometer. Estimating the attitude at a given time point requires at least two vector 
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measurements. With only one vector measurement, attitude estimation is possible 
with a recursive algorithm and a vector that changes direction over time. Since the 
magnetic field vector changes direction, it is suitable for a single sensor estimation 
algorithm. However, the attitude estimate must be propagated from one time to the 
next with an estimate of the spacecraft rate. Typically the rate is supplied by a gyro. 
Without a gyro, an estimate of the rate must be provided by some other means. Re- 
cent works have focused on simultaneous attitude and rate estimation using Euler’s 
equations to model the spacecraft motion, or alternatively, a kinematic approach to 
modelling the spacecraft motion. 

The first algorithm considered is based on the Integrated-Rate Parameters (IRP) 
approach.’ This algorithm uses a kinematic approach to the spacecraft rate modeling, 
much like is done in aircraft tracking. This approach is less sensitive to uncertainties 
in the spacecraft dynamics. This approach met both the attitude and rate knowledge 
requirement during the inertial periods. However, the IRP filter performed poorly 
during slew maneuvers. The second algorithm considered is the pseudo-linear rate 
estimation algorithm.2 This algorithm combines an Extended Kalman Filter (EKF) 
algorithm with Euler’s equations to model the spacecraft dynamics in a pseudo-linear 
approach. This approaches requires the spacecraft actuator data from the reaction 
wheels and magnetic torque bars. Due to problems with this data during inertial 
periods, this filter did not adequately estimate the attitude. 

The two algorithms are combined to form a hybrid IRP-Euler filter approach. The 
IRP filter is used during inertial periods. During maneuvers, the kinematics model 
of the IRP filter is replaced with the dynamics model based on Euler’s equations. 
Modelling the movement of the solar arrays during a maneuver improved the dynamics 
model used in the pseudo-linear algorithm, resulting in a dramatic decrease in the 
propagation errors. The hybrid algorithm successfully provided the required attitude 
and rate knowledge during the inertial periods and closely followed the maneuvers. 

Tests of the hybrid IRP-Euler filter approach, with a variety of data sets, are 
provided. Fortunately for our analysis, the FUSE project was able to provide a 
copious amount of flight data. The estimated attitudes are compared to the onboard 
attitude estimate which is an extended Kalman filter using the science star tracker and 
the ring laser gyros. The estimated rates are compared to the ring laser gyro output, 
compensated for gyro bias errors. During a maneuver, the science star tracker is not 
used. The gyro data provides the necessary accuracy for the onboard algorithm during 
the maneuver. The attitude and rate error accuracy requirements are 2 degrees and 20 
arc-sec/sec, respectively, except during the maneuver period. Operating within these 
requirements allows the science star tracker to identify and track stars following a 
slew maneuver. Once the star tracker identifies stars, the attitude and rate estimates 
are provided by the star tracker (the star tracker estimates a quaternion which is 
numerically differentiated to provide the rate). The rate estimates provided by the 

2 



star tracker are comparable in accuracy to the gyro data, provided the spacecraft 
rates are maintained within the rate requirement. 

Finally, the algorithm is required to work with a controller. This is the most chal- 
lenging requirement. A closed loop simulation is developed with the hybrid IRP-Euler 
filter providing the state estimates for a quaternion feedback ~ont ro l le r .~  The truth 
model consists of integrating Euler's equation as well as the quaternion kinematic 
equation. The magnetometer is modelled as the true field in body coordinates plus 
white noise. As might be expected, the controller's performance is highly dependent 
on the accuracy of the estimator and the estimator's accuracy is highly dependent on 
the dynamics of the spacecraft induced by the controller. The remainder of the paper 
is devoted to summaries of the estimation algorithms, the controller simulation, and 
test results. 

IRP ALGORITHM SUMMARY 

The IRP algorithm is a sequential filter for estimating both the spacecraft atti- 
tude and rate from vector measurements, avoiding the use of the uncertain spacecraft 
dynamics model. The algorithm is only briefly summarized herein. A detailed de- 
scription can be found in Ref. l. 

The attitude matrix evolves using an integrated rate parameters method. The 
attitude matrix differential equation is given as 

where D ( t )  is the spacecraft attitude matrix. S2(t) = - [ o ( t ) x ] ,  with o(t) the space- 
craft angular velocity and [ ~ ( t )  x ]  defined as the cross product matrix 

Expressing the attitude in terms of the integrated rate parameters, leads to a discrete- 
time version of the attitude matrix evolution given by Eq. (l), written compactly as' 

where the integrated rate parameter vector at  time k is 
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and 

where wi = wz, wy,  w, for i = 1,2,3,  respectively. 

The IRP algorithm models the spacecraft angular 
stochastic process with an exponential autocorrelation 

( 5 )  

acceleration as a zero-mean 
function, rather than relying 

on the nonlinear spacecraft dynamics model given by Euler 's equation. The first-order 
Markov process is 

where A is a diagonal matrix containing the acceleration decorrelation times. The 
driving noise, f i( t) ,  is a zero-mean white process with power spectral density matrix 

&(t) = -Acj(t) + 6 ( t )  (6) 

Q(t1.l 

Finally, the state vector in the IRP algorithm is given as 

=(t) = [e(t)' ~ ( t ) '  cj(t)'lT (7) 

The discrete time state equation is 

z ( k  + 1) = @(T)z(k)  + Y ( k )  

where ~ ( k )  is a zero-mean, white noise sequence, with covariance matrix Q(k) . l  For a 
sampling interval, T, the state transition matrix for the discrete-time state equation 
is 

(8) 

Explicit expressions for the entries of the covariance matrix Q ( k )  appear in Ref. 1. 

Vector Measurement and Algorithm Update 

The magnetometer vector measurement, in spacecraft body coordinates, is related 
to  the true magnetic field vector as 

b(k + 1) = D ( k  + l ) r ( k  + 1) + nb(k + 1) (9) 

where n b ( k  + 1) is a white sensor measurement noise, b(k + 1) and r(k + 1) are the 
magnetic field vectors in body and reference coordinates, respectively. The refer- 
ence field is generated with a 10th order International Geomagnetic Reference Field 
model.4 
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Expanding Eq. (9) about the predicted state estimate results in the following 
relationship 

b(k + 1) - h ( k  + l l k ) r (k  + 1) = H ( k  + 1)6z(k + 1) + nb(k + 1) (10) 

where b ( k  + I lk)  is the estimated attitude at time, k ,  propagated to time, k + 1 and 
H ( k  + 1) is the observation matrix.' The error term 6 z ( k  + 1) is defined as 

S z ( k  + 1) = z ( k  + 1) - k ( k  + 1 I k) (11) 

where k ( k +  1 I k) is the predicted state estimate at time k + l  based on measurements 
up to time k. The state is then updated in the usual extended Kalman filter approach 

k ( k  + l l k  + 1) = k ( k  + Ilk) + K ( k  + l)(b(k + 1) - b ( k  + l l k ) r ( k  + 1)) (12) 

The gain matrix K ( k  + 1) is computed according to 

K ( k  + 1) = P(k  + l lk)H'(k + l)[H(k + 1)P(k + llk)H'(k + 1) + R]-' (13) 

where P(k+ Ilk) is the propagated covariance matrix and R is the covariance matrix 
of the white sensor measurement noise and is assumed to be constant. The covariance 
matrix is updated according to 

P(k + l l k  + 1) = [ I  - K ( k  + l)H(k + l ) ] P ( k  + l l k ) [ l -  K ( k  + 1)H(k + l)]' 
+ K(k  + l)RK(k + 1)' (14) 

Following the state update, the attitude matrix is updated with the integrated rate 
parameters, the state is adjusted for a reset of the integrated rate parameters (since 
they are completely incorporated into the attitude matrix), and then the attitude 
matrix is normalized.' 

IRP Prediction 

The state is propagated forward with 

z ( k  + 1 I I C )  = @(T)kC(k I k) (15) 

where @(T) is given in Eq. (8) ,  and kc(k I k )  is the state update after reset. The 
covariance is propagated according 

P(k + 1 I k) = @(T)P(k I I C ) @ @ ) '  + Q ( k )  

The attitude matrix is propagated forward as a function of the propagated state and 
the current, orthogonalized attitude matrix.' 
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PSEUDO-LINEAR DYNAMICS MODEL 

The IRP algorithm provided estimates of the attitude and rate within the FUSE 
requirements during the inertial periods. During the maneuvers, the rate estimates 
did not follow the gyro data adequately. In an attempt to improve the rate estimate 
during a maneuver, the IRP rate propagation was augmented with a pseudo-linear 
version of Euler's equation.2 

The dynamics equation of a rigid spacecraft is given, in general, as 

d 
d t  - ( I ( t )w( t )  + h(t))  = T( t )  

i ( t )w( t )  + I ( t ) b ( t )  + h(t) + w ( t )  x ( I ( t ) o ( t )  + h(t)) = T( t )  (17) 
where I ( t )  is the spacecraft inertia matrix, h(t) is the angular momentum of the 
spacecraft reaction wheels, and T( t )  is the external torque acting on the spacecraft. 
Inverting the inertia matrix and rearranging the terms, Eq. (17) becomes 

b(t) = I - ' ( t ) ( [ ( I ( t )w( t )  + h ( t ) ) x ]  - j ( t ) )w ( t )  + I-l( t)(T - h(t)) (18) 

Let F ( w ( t ) )  = I - ' ( t ) ( [ ( I ( t )w( t )  + h ( t ) ) x ]  - i ( t ) )  (note that this is not a unique 
representation2) and u(t) = I-'(t)(T - h(t)). Eq. (18) is then written as 

&(t)  = F(w( t ) )w( t )  + u(t) (19) 

In the pseudo-linear approach, Eq. (19) is treated as a 'linear' equation 

b(t) = F(&(t ) )w( t )  + u(t) (20) 

where &(t) is the current estimate of the angular velocity. The angular velocity is 
propagated by discretely solving Eq. (20). 

The external torques considered in Eq. (20) include an estimate of gravity gradient 
and the torque produced by the magnetic torque rods. The reaction wheel data is in- 
cluded, and the derivative of the reaction wheel momentum is computed numerically. 
The FUSE solar arrays reorient during a maneuver] therefore changing the spacecraft 
inertia. The derivative of the inertia matrix is computed numerically, based on the 
changing indexing angle of the solar arrays. The solar array inertia is converted to 
body coordinates with the array angle and added to the spacecraft body inertia. 
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HYBRID ALGORITHM 

The hybrid algorithm used to estimate the FUSE attitude and rate is a combina- 
tion of the pseudo-linear dynamics model with the IRP algorithm. The IRP algorithm 
is implemented as outlined above. The state is updated with the magnetometer data, 
and propagated with the acceleration model. However, during the propagation, the 
angular rate is simultaneously propagated with the pseudo-linear equation given in 
Eq. (20). At the end of the propagation cycle, the angular rate in the IRP state 
vector is replaced with the rate propagated with the spacecraft dynamics. The pro- 
cess repeats as the IRP update cycle is performed with the hybrid propagated state 
vector. 

This method resulted from an attempt to improve the FUSE attitude and rates 
estimated during a maneuver. Future research will address the theoretical consider- 
ations on the impact of combining the two algorithms in a brute force manner. 

FUSE TEST RESULTS 

The hybrid IRP-Euler filter algorithm is tested with several FUSE data sets. All 
the data sets contain maneuvers. In all the cases with standard slew maneuvers, 
the IRP-Euler filter met the accuracy requirements. Examples from two data sets 
with typical slew maneuvers are presented first. The first data set contains two 
slew maneuvers. Figure 1 shows that the attitude estimate is within the two degree 
requirement, shown by the red line. The standard deviation is given by the blue 
line. Figure 2 shows that the rate estimate is within the 20 arcsec/sec requirement. 
Finally, Figure 3 shows the rate estimate, in blue, and the gyro data, in black. The 
z axis is the noisiest, but is still within the requirements. 

The second data set contains four maneuvers. The results are given in figures 
Again, in all cases, the attitude and rate estimates are within the 4 through 6. 

requirements. 

Next, the combined algorithm is tested on data containing large maneuvers. First, 
results from a long, continuous maneuver are presented. Figure 7 shows that the 
attitude error requirements are met. Figure 8 shows also that the rate requirements 
are met. Finally, Figure 9 shows that the rate estimate follows the gyro data during 
the maneuver. 

The last data set presented contains a series of sequential maneuvers, desired to 
maneuver the spacecraft through a large angle. Figures 10 and 11 show that the 
attitude and rate requirements are met in the beginning, but fail near the end of the 
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Figure 4 Attitude Errors, Day 80 of 2002 
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data. Figure 12 shows that the rate estimates follow the gyro data to some extent, 
but not as well as in previous data sets. The algorithm, as given, does not work well 
for this scenario. 

QUATERNION FEEDBACK CONTROL ALGORITHM 

A simple closed loop simulation is developed to provide insight into the stability of 
the combined IRP-Euler algorithm with a feedback controller. The feedback control 
algorithm is a quaternion feedback control3 

u(t) = -kp&(t)  - Icow(t) (21) 

where &(t)  is the vector part of the quaternion error, qc(t) = [Ec@)= 7jc(t)]. The 
quaternion error is computed as  

where q d  is the desired quaternion, and is constant. Given perfect measurements, 
q(t) and w(t ) ,  the closed loop system, with the control given by Eq. 21, is globally, 
asymptotically stable. 
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The true quaternion and rate are not known. Instead, estimates of the quaternion 
and rate are provided by the IRP-Euler algorithm. In a certainty equivalence fashion, 
the estimates are used in Eq. 21 as 

iqt) = -kp2,( t )  - IC&+) (22) 
The resulting closed loop system is asymptotically stable to within an RMS bound, 
given that the estimates are RMS bounded. The RMS error bounds of the closed loop 
system depend on the RMS bounds of the estimates, as well as the system parameters. 

CLOSED LOOP SIMULATION TEST RESULTS 

The initial closed loop simulation is intended to examine the stability properties 
of the closed loop system, comprised of the combined IRP-Euler algorithm and the 
quaternion feedback controller. The magnetometer measurements are corrupted with 
white noise. One reaction wheel along the spacecraft z axis is modelled, as well as 
three magnetic torque rods along each of the body axes (FUSE also has one oper- 
ating skew wheel, but only the z axis wheel is included in this preliminary study 
for simplicity). The reaction wheel and torque rod data are not contaminated. The 
magnetometer data is not corrupted by the magnetic torque rods. The control &(t)  
is resolved into a wheel torque and magnetic torque. The magnetic moment is lim- 
ited to 130 Amp m2 on each axis. The inertia matrix is a diagonal matrix, with the 
components [3550, 3390, 6901 kg m2 on the main diagonal. 
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The closed loop simulation run consisted of 1000 iterations, each iteration lasting 
approximately 60 minutes. The target quaternion direction is varied randomly in each 
iteration, and the rotation angle is 20 degrees. Figure 13 shows the attitude error 
angles between the actual attitude and the target attitude at the end of 60 minutes 

. for each of the 1000 iterations. In all cases, the errors are within 2 degrees. Figure 14 
shows the errors between the true attitude and the estimated attitude at the end of 
60 minutes for each iteration. Figure 15 shows the true rate, again at the end of 60 
minutes for each iteration. In most cases, the rate is within 20 arsec/sec. Figure 16 is 
a single test case, showing the attitude error throughout a single iteration. Figure 17 
shows the true rate during the maneuver, again throughout a single iteration. 

I 
0 200 400 600 800 1000 

-1 ' 
'I I 

iteration 

Figure 13 Actual At t i t ude  Error Angles After  60 Minutes 

This preliminary simulation indicates that the closed-loop system is stable, given 
few disturbances. Additional simulations, with a more complex set of disturbances, is 
required. Examples of additional disturbances to be considered are gravity gradient 
torques, reaction wheel disturbances, reaction wheel control torque limits, magne- 
tometer bias, and alignment errors. 

CONCLUSIONS 

Two estimation algorithms, designed to estimate spacecraft attitude and rate, are 
combined to provide the attitude and rate estimates for FUSE. The first algorithm, 
the IRP algorithm, uses a kinematic approach in modelling the angular acceleration of 
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the spacecraft. The second algorithm, the pseudo-linear extended Kalman filter, relies 
on the spacecraft dynamics model in the rate propagation. The only attitude sensor 
available is a magnetometer. Combining the two algorithms into the hybrid IRP-Euler 
algorithm, provides attitude and rate estimates within the accuracy requirements for 
most maneuver scenarios. A preliminary closed loop analysis indicates that the IRP- 
Euler filter with a quaternion feedback control algorithm is stable for modest sized 
maneuvers. Additional work is required to determine the full range of stability for 
the closed loop system. 
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